$解:(3)连接AD$
$∵△ACE与△DOE的面积相等$
$∴△AOC与△DOC的面积相等$
$∴AD//OC$
$设AD所在直线的表达式为y=kx+b$
$把A(0,6),D(-4,0)分别代入$
$得\begin{cases}b=6\\-4k+b=0\end{cases},解得\begin{cases}k=\frac 32\\b=6\end{cases}$
$∴直线AD的表达式为y=\frac{3}{2}x+6$
$∴直线OC的表达式为y=\frac{3}{2}x$
$解方程组\begin{cases}y=-\frac 34x+6\\y=\frac 32x\end{cases},得\begin{cases}x=\frac 83\\y=4\end{cases}$
$∴C(\frac{8}{3},4)$
$设P(t, -\frac{3}{4}t+6)$
$当点P在点C下方时,$
$S_{△PCD}=S_{△BCD}-S_{△PBD}$
$∵△DOC与△DPC的面积相等$
$∴\frac{1}{2}×12×4-\frac{1}{2}×12×(-\frac 34t+6)=8$
$解得t=\frac{40}{9}$
$此时点P 坐标为(\frac{40}{9},\frac{8}{3})$
$当点P 在点C上方时,$
$S_{△PCD}=S_{△PBD}-S_{△CBD}$
$∵△DOC与△DPC的面积相等$
$∴\frac{1}{2}×12×(-\frac 34t+6)-\frac{1}{2}×12×4=8$
$解得t=\frac{8}{9}$
$此时点P 坐标为(\frac{8}{9},\frac{16}{3})$
$综上所述,点P 坐标为(\frac{40}{9},\frac{8}{3})或(\frac{8}{9},\frac{16}{3})$