$(1)证明:∵CD//AB,∴∠BAE=∠ACD$
$在△ABE和△CAD中,\begin{cases}{∠BAE=∠ACD}\\{AB=AC}\\{∠ABE=∠CAD}\end{cases}$
$∴△ABE≌△CAD(\mathrm {ASA})$
$(2)解:∵∠ACB=∠ABC=70°,∴∠BAC=180°- ∠ABC-∠ACB=180°-70°-70°=40°$
$∵∠ABE=25°,∴∠CAD=∠ABE=25°$
$∴∠BAD=∠BAC+∠CAD=40°+25°=65°$
$∵CD//AB,∴∠D=180°-∠BAD=180°-65°=115°$