$解:(1)由\begin{cases}{y=-\frac{1}{2}x-1 } \\ {y=-2x+2} \end{cases},解得\begin{cases}{x=2}\\{y=-2}\end{cases}$
$∴P(2,-2)$
$(2)直线y=-\frac{1}{2}x-1与直线y=-2x+2中$
$令y=0,则-\frac{1}{2}x-1=0与-2x+2=0,解得x=-2与x=1$
$∴A(-2,0),B(1,0),∴AB= 3$
$∴S_{△PAB}=\frac{1}{2}AB×|y-p|=\frac{1}{2}×3×2=3$
$(3)如图所示,此时自变量x的取值范围是x\lt 2$