$解:(1)∵∠ADC=90°,CD=1,BD=1$
$∴BC=\sqrt{CD²+BD²}=\sqrt{1²+1²}=\sqrt{2}$
$(2)①∵△PDC≌△BDC$
$∴PD= BD=1,即2-t=1$
$解得t=1$
$∴当t=1时,△PDC≌△BDC$
$②当点P 与点D重合时$
$∵AD=2$
$∴t=2$
$当BP= BC时,∵BC=\sqrt{2}$
$∴BP=(AD+ BD)-t=\sqrt{2},即(2+1)-t=\sqrt{2}$
$解得t=3- \sqrt{2}$
$∴当t=2或t=3-\sqrt{2}时,△PBC是以PB为腰的等腰三角形$