$解:①3¹⁰⁰+3⁹⁹+···+3²+3+1$
$= \frac{1}{2} ×(3-1)×(1+3+3²+···+39⁹⁹+ 3¹⁰⁰)$
$= \frac{3¹⁰¹-1}{2}$
$②因为(-2-1)[(-2)²⁰²²+(-2)²⁰²¹+(-2)²⁰²⁰+···+(-2)³+(-2)²+(-2)¹+1]$
$=(-2)²⁰²³-1=-2²⁰²³-1$
$所以(-2)²⁰²²+(-2)²⁰²¹+(-2)²⁰²⁰+···+(-2)³+(-2)²+(-2)¹+1$
$= \frac{2²⁰²³+1}{3}③2¹⁰⁰+2⁹⁹+···+2³+2²+2$
$=2×(2⁹⁹+2⁹⁸+···+2²+2+1)$
$=2×[(2-1)×(2⁹⁹+2⁹⁸+···+2²+2+1)]$
$=2×(2¹⁰⁰-1)$
$=2¹⁰¹-2$