$解:(1)当x=1时,原式为0,因此原式有因式(x-1)$
$分解结果为x³- 9x+8=(x³-1)-9(x-1)$
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(x-1)(x²+x+1-9)$
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(x-1)(x²+x-8)$
$(2)当x=-1时,x³+5x²+8x+4=-1+5-8+4=0$
$表明x³+5x²+8x+4有因式(x+1)\ $
$因此x³+5x²+8x+4$
$=(x³+1)+5(x²-1)+8(x+1)$
$=(x+1)(x²-x+1)+5(x-1)(x+1)+8(x+1)$
$=(x+1)[(x²-x+1)+5(x-1)+8]$
$=(x+1)(x²+4x+4)$
$=(x+1)(x+2)²$