电子课本网 第78页

第78页

信息发布者:
$ 解:设x²+x=y $
$ \begin{aligned} 则原式&=(y-4)(y+3)+10 \\ &=y²-y-2 \\ &=(y-2)(y+1) \\ &=(x²+x-2)(x²+x+1) \\ &=(x+2)(x-1)(x²+x+1). \\ \end{aligned}$
$ 解:设x²+6=m $
$ \begin{aligned} 则原式&= (x+1)(x+6)(x+2)(x+3)+x² \\ &=(x²+6+7x)(x²+6+5x)+x² \\ &=(m+7x)(m+5x)+x² \\ &=m²+12xm+35x²+x² \\ &=m²+12xm+36x² \\ &=(m+6x)² \\ &=(x²+6x+6)². \\ \end{aligned}$


$ 解:设x+y=m,xy=n $
$ \begin{aligned} 则原式&=(m-2n)(m-2)+(n-1)² \\ &=m²- 2m-2mn+4n+n²-2n+1 \\ &=m²-2m-2mn+n²+2n+1 \\ &=m²-2m(1+n)+(n+1)² \\ &=(m-n-1)² \\ &=(x+y-xy-1)² \\ &=(y-1)²(1-x)² \\ \end{aligned}$
$解:(1)设另一个因式是(x+b)$
$ \begin{aligned}则(2x-5)(x+b)&=2x²+2bx-5x-5b \\ &=2x²+(2b-5)x-5b \\ &=2x²+3x-k \\ \end{aligned}$
$则2b-5=3,-5b=-k,解得b=4,k=20$
$则另一个因式是(x+4),k=20.$
$(更多请点击查看作业精灵详解)$
$解:(1)当x=1时,原式为0,因此原式有因式(x-1)$
$分解结果为x³- 9x+8=(x³-1)-9(x-1)$
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(x-1)(x²+x+1-9)$
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(x-1)(x²+x-8)$
$(2)当x=-1时,x³+5x²+8x+4=-1+5-8+4=0$
$表明x³+5x²+8x+4有因式(x+1)\ $
$因此x³+5x²+8x+4$
$=(x³+1)+5(x²-1)+8(x+1)$
$=(x+1)(x²-x+1)+5(x-1)(x+1)+8(x+1)$
$=(x+1)[(x²-x+1)+5(x-1)+8]$
$=(x+1)(x²+4x+4)$
$=(x+1)(x+2)²$