$解:解法一(拆二次项):$
$ \begin{aligned}原式&=(x³+x²)+(x²-5x-6) \\ &=x²(x+1)+(x+ 1)(x-6) \\ &=(x+1)(x²+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$
$解法二(拆一次项):$
$ \begin{aligned}原式&=(x³+2x²-8x)+(3x-6) \\ &=x(x²+2x-8)+3(x-2) \\ &=x(x-2)(x+4)+3(x-2) \\ &=(x-2)(x²+4x+3) \\ &=(x-2)(x+1)(x+3) \\ \end{aligned}$
$解法三(拆常数项):$
$ \begin{aligned}原式&=(x³+1)+(2x²-5x-7) \\ &=(x+1)(x²-x+1)+(x+1)(2x-7) \\ &=(x+1)(x²-x+1+2x-7) \\ &=(x+1)(x²+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$
$解法四(拆二次项与一次项):$
$ \begin{aligned}原式&=(x³+x²)+(x²+x)-(6x+6) \\ &=x²(x+1)+x(x+1)-6(x+1) \\ &=(x+1)(x²+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$