$解:如图,过点A作AC⊥OB于C,过点$
$O′作O′D⊥A′B于D$
$∵A(2,\sqrt{5})$
$∴OC=2,AC=\sqrt{5}$
$由勾股定理得$
$OA=\sqrt{OC^2+AC^2}=3$
$∵△AOB为等腰三角形,OB是底边$
$∴OB=2OC=2×2=4,由旋转的性质得$
$BO′=OB=4,∠A′BO′=∠ABO$
$∴O′D=4×\frac{\sqrt{5}}{3}$
$=\frac{4\sqrt{5}}{3}$
$BD=4×\frac{2}{3}=\frac{8}{3}$
$∴OD=OB+BD=4+\frac{8}{3}=\frac{20}{3}$
$∴点O′的坐标为(\frac{20}{3},\frac{4\sqrt{5}}{3})$