$证明:(1)将点(r,0)代入y_1,得$
$r^2+br+a=0$
$∵r≠0$
$∴等式两边同时除r^2得 $
$\frac {a}{r^2}+\frac {b}{r}+1=0$
$即a(\frac {1}{r})^2+b×\frac {1}{r}+1=0$
$∴\frac {1}{r}是ax^2+bx+1=0的解$
$∴函数y_2的图像经过点(\frac {1}{r},0)$
$(2)由题意可知y_2图像开口向上,a>0$
$m=\frac {4×1×a-b^2}{4×1}=a-\frac {b^2}{4}$