$解:在Rt↑ABC中AB=\sqrt{AC^2+BC^2}=10cm$
$⊙O半径为4cm$
$①当△ABC的边AC与⊙O相切于点E时$
$OE=\frac12DE=4cm$
$t=\frac {6-4}{1}=2s$
$②当AB与⊙O相切时$
$∵∠B=∠B,∠ACB=∠OFB=90°$
$∴△ABC∽△OBF$
$BO=\frac {OF×AB}{AC}=\frac {20}{3}cm$
$OC=BC-BO=\frac43cm$
$t=\frac {6+\frac43}{1}=\frac {22}{3}s$
$③当AC与⊙O相切于D点时$
$t=\frac {6+4}{1}=10s$
$④当AB所在直线与⊙O相切时$
$∵∠OGB=∠ACB=90°,∠OBG=∠ABC$
$∴△OBG∽△ABC$
$∴OB=\frac {AB×OG}{AC}=\frac {20}{3}cm$
$t=\frac {6+\frac {20}{3}+8}{1}=\frac {62}{3}s$