电子课本网 第142页

第142页

信息发布者:
$(1)证明:∵AB=AC$
$∴∠B=∠ACB$
$∵△ABC平移得到△DEF$
$∴AB//DE$
$∴∠B=∠DEC$
$∴∠DEC=∠ACB.$
$即△OEC为等腰三角形$
$(2)解:当E为BC中点时,四边形AECD$
$为矩形,理由如下:$
$∵AB=AC,E为BC中点$
$∴AE⊥BC,BE=EC$
$∵△ABC平移得到△DEF$

∴BE//AD,BE=AD
∴AD//EC,AD=EC
∵AE⊥BC
∴四边形AECD为矩形

$(1)解:∵DA'//AB$
$∴∠ABC=∠BDA'$
$∵∠BAC=∠A'ED=90°$
$∴△A'DE∽△CBA$
$∴∠DA'E=∠C$
$∵sinC=\frac34$
$∴sin∠DA'E=\frac34$
$即\frac {DE}{A'D}=\frac34$
$∵DA'=DA=DB=DC $
$∴\frac {DE}{DB}=\frac34$
$∴\frac {S_{△A'DE}}{S_{△A'DB}}=\frac34$
$∵\frac {S_{△A'DE}}{S_{△ABC}}=(\frac {DA'}{BC})^2=\frac14$
$∴\frac {S_{△A'DE}}{S_{△ABD}}=\frac12$
$设S_{△A'DE}=3k$
$则S_{△A'DB}=4k$
$S_{△ABD}=6k$
$∴\frac {S_{A'DE}}{S_{四边形A'DAB}}=\frac {3}{10}$
$(2)∠BA'E=∠DA'A$
$证明:$
$设∠BA'E=α,则∠A'BE=90°-α$
$∵DA'=DB$
$∴∠A'DB=2α$
$∵DA'//AB$
$∴∠ABD=2α$
$∴∠C=90°-2α$
$∵DA=DC$
$∴∠ADB=2(90°-2α)=180°-4α$
$∴∠ADA'=180°-2α$
$∵DA=DA'$
$∴∠DA'A=[180°-(180°-2α)]÷2=α$
$∴∠BA'E=∠DA'A$