$(1)解:∵DA'//AB$
$∴∠ABC=∠BDA'$
$∵∠BAC=∠A'ED=90°$
$∴△A'DE∽△CBA$
$∴∠DA'E=∠C$
$∵sinC=\frac34$
$∴sin∠DA'E=\frac34$
$即\frac {DE}{A'D}=\frac34$
$∵DA'=DA=DB=DC $
$∴\frac {DE}{DB}=\frac34$
$∴\frac {S_{△A'DE}}{S_{△A'DB}}=\frac34$
$∵\frac {S_{△A'DE}}{S_{△ABC}}=(\frac {DA'}{BC})^2=\frac14$
$∴\frac {S_{△A'DE}}{S_{△ABD}}=\frac12$
$设S_{△A'DE}=3k$
$则S_{△A'DB}=4k$
$S_{△ABD}=6k$
$∴\frac {S_{A'DE}}{S_{四边形A'DAB}}=\frac {3}{10}$
$(2)∠BA'E=∠DA'A$
$证明:$