$解:要使原方程有实数根,则[2(1+a)]²-4(3a²+ 4ab+4b²+2)≥0$
$整理,得2a²+4b²-2a+4ab+1≤0,即(a²+4ab+4b²)+(a²-2a+1)≤0$
$∴(a+2b)²+(a-1)²≤0$
$∵(a+2b)²≥0,(a-1)²≥0,∴(a+2b)²+(a-1)²≥0,∴(a+2b)²+(a-1)²=0$
$∴\begin{cases}{a+2b=0}\\{a-1=0}\end{cases},解得\begin{cases}{a=1}\\{b=-\frac {1}{2}}\end{cases}$
$故当a=1,b=-\frac{1}{2}时,原方程有实数根$