$解:∵x_{1},x_{2}是一元二次方程的两个实数根$
$∴x_{1}+x_{2}=-1,x_{1}^2+x_{1}-4=0,x_{2}^2+x_{2}-4=0$
$∴x_{1}^2=4-x_{1},x_{2}^2=4-x_{2}$
$∴原式=x_{1}(4-x_{1})-5(4-x_{2})+10$
$=4x_{1}-x_{1}^2-20+5x_{2}+10$
$=4x_{1}-(4-x_{1})+5x_{2}-10$
$=5(x_{1}+x_{2})-14$
$=5×(-1)-14$
$=-19$