$解:连接 AD,过点 B 作 BH⊥CD 于点 H,则 ∠BHC=∠BHD=90°$
$∵AB 是⊙O的直径,∴∠ACB=∠ADB=90°$
$∵P 是△ABC 的内心,∴∠ACD = ∠BCH =\frac{1}{2}∠ACB=45°$
$∴\widehat{AD}=\widehat{BD},∴AD=BD$
$∴AB= \sqrt{AD²+BD²}= \sqrt{2}\ \mathrm {BD}$
$∵⊙O的半径为 3 \sqrt{2},∴AB=6 \sqrt{2}$
$∴\sqrt{2}BD=6 \sqrt{2},∴BD=6$
$∵∠CBH=90°-∠BCH=45°,∴∠BCH=∠CBH,∴BH=CH$
$设BH=CH=x,则 BC= \sqrt{BH²+CH²}=\sqrt{2}x$
$∵CD=8,∴DH=CD-CH=8-x$
$∵BH²+DH²=BD²,∴x²+(8-x)²=36$
$解得x=4± \sqrt{2},∴BC=4 \sqrt{2}±2$
$∵BC>AC,∴BC=4 \sqrt{2}-2不合题意,舍去$
$故BC的长为4 \sqrt{2}+2$