$证明:(2)∵∠1=∠2,∠AOE=∠COD,$ $∴∠E=∠C.$ $在△ABC和△ADE中,\ $ $\begin{cases}{ AC=AE,}\\{∠C=∠E,}\\{ BC=DE,}\end{cases}$ $ ∴△ABC≌△ADE(\mathrm {SAS}).$
$证明:(1)∵D为线段BE的中点,$ $∴ED=BD.\ $ $∵AD⊥BE,$ $∴∠ADE=∠ADB=90°.$ $在△AED和△ABD中,\ $ $\begin{cases}{\ ED=BD,\ }\\{∠ADE=∠ADB,\ }\\{AD=AD,\ }\end{cases}$ $∴△AED≌△ABD(\mathrm {SAS}),$ $∴∠EAD=∠BAD.$ (更多请点击查看作业精灵详解)
$证明:(1)∵BE⊥AP,CF⊥AP,\ $ $∴∠E=∠CFA=90°,$ $∴∠FAC+∠ACF=90°.\ $ $∵∠BAC=90°,$ $∴∠BAE+∠FAC=90°,\ $ $∴∠BAE=∠ACF.\ $ $在△ABE和△CAF中,$ $\begin{cases}{∠E=∠CFA,\ }\\{∠BAE=∠ACF,\ }\\{AB=CA,\ }\end{cases}$ $∴△ABE≌△CAF(\mathrm {AAS}),\ $ $∴AE=CF,BE=AF.\ $ $∵EF=AE-AF,$ $∴EF=CF-BE.$ (更多请点击查看作业精灵详解)
$证明:∵AD,A'D'分别为边BC,B'C'上的高,\ $ $∴∠ADB=∠A'D'B'=90°.\ $ $在Rt△ADB和Rt△A'D'B'中,$ $AB=A'B'$ $AD=A'D'$ $∴Rt△ADB≌Rt△A'D'B'(\mathrm {HL}),$ $∴∠B=∠B'.\ $ $在△ABC和△A'B'C'中,\ $ $AB=A'B',\ ∠B=∠B', BC=B'C',\ $ $∴△ABC≌△A'B'C'(\mathrm {SAS}).$
|
|