电子课本网 第9页

第9页

信息发布者:
63
$ \begin{aligned}解:原式&=10x-35y-12x+30y \\ &=-2x-5y \\ \end{aligned}$
$ \begin{aligned}解:原式&=\frac{1}{2}a^{2}-\frac{1}{2}b+\frac{1}{3}a-\frac{1}{3}b^{2}+\frac{1}{6}a^{2}+\frac{1}{6}b^{2} \\ &=\frac{2}{3}a^{2}+\frac{1}{3}a-\frac{1}{6}b^{2}-\frac{1}{2}b. \\ \end{aligned}$
$解:原式= 2a^{2}-(\frac{1}{2}ab-2a^{2}-7ab)-\frac{1}{2}ab$
$=2a^{2}-\frac{1}{2}ab+ 2a^{2}+ 7ab-\frac{1}{2}ab$
$=4a^{2}+6ab$
$由题意,得a+\frac{1}{2}=0,b- 3=0,$
$所以a=-\frac{1}{2},b=3,$
$所以原式=4×(-\frac{1}{2})^{2}+6×(-\frac{1}{2})×3=1-9=-8$
$解:(2 x^{2}+a x-y+6)-(2 b x^{2}-3 x+5 y-1)$
$=\ 2 x^{2}+a x-y+6-2 b x^{2}+3 x-5 y+1$
$=(2- 2 b) x^{2}+(a+3) x-6 y+7$
$由题意, 得 2-2 b= 0, a+3=0 ,所以 b=1, a=-3 ,$
$所以 \frac{1}{3} a^{3}- 3 b^{2}-(\frac{1}{4} a^{3}-2 b^{2})$
$=\frac{1}{3} a^{3}-3 b^{2}-\frac{1}{4} a^{3}+2 b^{2}$
$= \frac{1}{12} a^{3}-b^{2}$
$=\frac{1}{12} \times(-3)^{3}-1^{2}=-\frac{9}{4}-1=-\frac{13}{4}$