$解:(1)∵|a+1|+(b-3)²=0,且|a+1|≥0,(b- 3)²≥0,$
$∴a+1=0,b-3=0,$
$∴a=-1,b=3.\ $
$如图,过点M作MN⊥x轴于点N.\ $
$∵点M(-1.5,-2),$
$∴MN=2.\ $
$∵A(-1,0)、B(3,0),$
$∴AB=1+3=4,\ $
$∴S_{△ABM}=\frac{1}{2}×AB×MN=\frac{1}{2}×4×2=4.$
$(2)设点P的坐标为(p,0).\ $
$由题意,得S_{△AMP}=\frac{1}{2}×|-1-p|×2=4,\ $
$解得p=3或p=-5.\ $
$当p=3时,△APM与△ABM重合,不合题意,舍去,$
$∴点P的坐标为(-5,0).$
$(3)Q(0,\frac{4}{9})或(0,-\frac{28}{9})$