解:∵$a$,$b$互为倒数,$c$,$d$互为相反数,$|m|=3$
∴$ab=1$,$c+d=0$,$m=±3$
∴当$m=3$时,$\frac {ab}{3}+m +\frac {c+d}{4} =\frac {1}{3}+3+\frac {0}{4}=\frac {10}{3} $
当$m=-3$时,$\frac {ab}{3}+m +\frac {c+d}{4} =\frac {1}{3}+(-3)+\frac {0}{4} =-\frac {8}{3} $
由上可得,$\frac {ab}{3}+m +\frac {c+d}{4}$的值是$\frac {10}{3}$或$-\frac {8}{3}$