解:$(1)(5\ \mathrm {m^2}-4m+2)-(4\ \mathrm {m^2}-4m-7)=5\ \mathrm {m^2}-4m+2-4\ \mathrm {m^2}+4m+7=\mathrm {m^2}+9$
∵不论$m $为何值,$\mathrm {m^2}+9>0$恒成立
∴$5\ \mathrm {m^2}-4m+2>4\ \mathrm {m^2}-4m-7$
$(2)$∵$A=5\ \mathrm {m^2}-4(\frac {7}{4}m -\frac {1}{2})$,$B=7(\mathrm {m^2}-m)+3$
∴$A-B=[5\ \mathrm {m^2}-4(\frac {7}{4}m -\frac {1}{2}) -[7(m²-m)+3]$
$=5\ \mathrm {m^2}-4(\frac {7}{4}m -\frac {1}{2})-7(\mathrm {m^2}-m)-3$
$=5\ \mathrm {m^2}-7m+2-7\ \mathrm {m^2}+7m-3$
$=-2\ \mathrm {m^2}-1$
∵不论$m $为何值,$-2\ \mathrm {m^2}-1<0$恒成立
∴$A-B<0$,即$A<B$
$(3)(3a+2b)-(2a+3b)=3a+2b-2a-3b=a-b$
当$a>b$时,$a-b>0$,此时$3a+2b>2a+3b$
$ $当$a=b$时,$a-b=0$,此时$3a+2b=2a+3b$
当$a<b$时,$a-b<0$,此时$3a+2b<2a+3b$