电子课本网 第49页

第49页

信息发布者:
(更多请点击查看作业精灵详解)
(更多请点击查看作业精灵详解)
$ 解:(1)∠BDP=∠EPC$
$ 理由如下:∵△ABC为等边三角形$
$ ∴∠B=60°$
$ ∵∠DPE= 60°$
$ ∴∠DPE=∠B$
$∵∠DPC是△BDP 的外角$
$ ∴∠DPE+ ∠EPC =∠B+ ∠BDP$
$ ∴∠EPC=∠BDP$
(更多请点击查看作业精灵详解)
$证明: ( 1 )∵△ABE和△ ACD都是等边三角形$
$∴AE=AB, AC=AD ,∠EAB=∠CAD=60°$
$∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD$
$在△EAC和△ BAD中$
$\begin{cases}AE= AB\\∠EAC=∠BAD\\AC= AD\end{cases}$
$∴△EAC≌△BAD ( SAS )∴EC=BD$
$( 2 ) ∵△EAC≌△BAD∴∠ABD=∠AEC$
$∴∠BOC=∠EBO+∠BEO=∠EBA+∠ABD+∠AEB-∠AEC$
$=∠EBA+∠AEB=60° + 60°=120°$
$ $