$解:在直角 \triangle A B C 中, 已知 A B=2.5\ \mathrm {m}, B C=0.7\ \mathrm {m},$
$则 A C=\sqrt{2.5^2-0.7^2}=2.4(\mathrm {m}),$
$\because A C=A A_1+C A_1, A A_1=0.4\ \mathrm {m},$
$\therefore 2.4\ \mathrm {m}=0.4\ \mathrm {m}+C A_1,$
$\therefore C A_1=2\ \mathrm {m},$
$\because 在直角 \triangle A_1\ \mathrm {B}_1\ \mathrm {C} 中, \angle C=90^{\circ},A B=A_1\ \mathrm {B}_1, 且 A_1\ \mathrm {B}_1 为斜边,$
$\therefore C B_1=\sqrt{A B_1{ }^2-C A_1^2}=\sqrt{2.5^2-2^2}=1.5(\mathrm {m})$
$\therefore B B_1=C B_1-B C=1.5\ \mathrm {m}-0.7\ \mathrm {m}=0.8\ \mathrm {m}$
$∴点B将向外移动0.8米.$