$证明:(1)过D作DQ⊥BC于Q,连接DE.$
$∵⊙D切AB于E,$
$∴DE⊥AB,$
$∵四边形ABCD是菱形,$
$∴BD平分∠ABC,$
$∴DE=DQ.$
$∵DQ⊥BC,DE=DQ,$
$∴⊙D与边BC也相切.$
$(2)解:连接DE、过F_{作}FN⊥DH于N.$
$∵四边形ABCD是菱形,$
$∴AD=AB=2\sqrt{3},$
$∵∠A=60°,$
$∴△ABD是等边三角形,$
$∴∠DBA=60°,DC∥AB,AD=BD=AB=2\sqrt{3}.$
$∵DE⊥AB,$
$∴AE=BE=\sqrt{3}.$
$∵Rt△DEA中,AE=\sqrt{3},∠A=60°,$
$∴DE=3=DH=DF,$
$∵四边形ABCD是菱形,$
$∴∠C=∠A=60°,DC=BC,$
$∴△DCB是等边三角形,$
$∴∠CDB=60°,$
$∵DF=DH,$
$∴△DFH是等边三角形,$
$∵FN⊥DH,$
$∴DN=NH=\frac {3}{2}.$
$∵Rt△FND中,DN=\frac {3}{2},∠FDN=60°,$
$∴FN=\frac {3\sqrt{3}}{2},$
$∴S_{阴影}=S_{扇形FDH}-S_{△FDH}=\frac {60π×{3}^2}{360}-\frac {1}{2}×3×\frac {3\sqrt{3}}{2}=\frac {3}{2}π-\frac {9\sqrt{3}}{4}=\frac {6π-9\sqrt{3}}{4}.$
$(3)解:过M作MZ⊥DF_{于}Z.$
$由(2)知:S_{△HDF}=\frac {1}{2}×3×\frac {3\sqrt{3}}{2}=\frac {9\sqrt{3}}{4},DF=3,$
$∵S_{△HDF}=\sqrt{3}S_{△DFM},$
$∴\frac {9\sqrt{3}}{4}=\sqrt{3}×\frac {1}{2}×3×MZ,$
$∴MZ=\frac {3}{2},$
$∵在Rt△DMZ中,sin∠MDZ=\frac {MZ}{DM}=\frac {1}{2},$
$∴∠MDZ=30°,$
$同理还有另一点M′也符合,此时MM′∥CD,∠M′DC=180°-30°=150°,$
$∴弧MF的长是\frac {30π×3}{180}=\frac {1}{2}π;$
$弧FM′的长是\frac {150π×3}{180}=\frac {5}{2}π.$
$所以动点M经过的弧长是\frac {1}{2}π或\frac {5}{2}π.$