$解:作OM⊥AB于点M ,连接OA$
$圆半径 OA= \frac{1}{2}(DE + EC)= 6cm$
$OE= DE- OD = 3cm$
$在直角△OEM中,∠CEB= 45°\ $
$则 OM = \frac{\sqrt{2}}{2} OE=\frac{3\sqrt{2}}{2}cm\ $
$在直角△OAM中,根据勾股定理:$
$AM= \sqrt{OA^{2}-OM^{2}}= \sqrt{6^{2}-(\frac{3\sqrt{2}}{2})^{2}}= \frac{3\sqrt{14}}{2}$
$所以 AB= 2AM = 3\sqrt{14}cm$