电子课本网 第122页

第122页

信息发布者:
$解:如图, 连 A D, B D$
$过点 作 B E \perp C D 于 E$
$\because A B 是直径$
$\therefore \angle A C B=90^{\circ},\angle A D B=90^{\circ}$
$\because A C=6, A B=10$
$\therefore B C=\sqrt{A B^2-A C^2}$
$=\sqrt{10^2-6^2}=8$
$\because C D 平分 \angle A C B$
$\therefore \angle B C D=45^{\circ}$
$\because B E \perp C D$
$\therefore C E=B E$
$\because C E^2+B E^2=B C^2, B C=8$
$\therefore C E=B E=4 \sqrt{2}$
$\because C D 平分 \angle A C B$
$\therefore\widehat{ A D}=\widehat{B D}$
$\therefore A D=B D$
$\because A D^2+B D^2=A B^2, A B=10$
$\therefore B D=5 \sqrt{2}$
$\therefore 在 R t \triangle B D E 中,$
$\because B D=5 \sqrt{2}, B E=4 \sqrt{2}$
$\therefore D E=\sqrt{B D^2-B E^2}$
$=\sqrt{(5 \sqrt{2})^2-(4 \sqrt{2})^2}=3 \sqrt{2}$
$\therefore C D=C E+D E$
$=4 \sqrt{2}+3 \sqrt{2}=7 \sqrt{2}$

$解:(1)∠ ABC与\angle C相等$
$连接OD$
$\because FD切\odot O于点D$
$\therefore OD\bot DF$
$\because BF\bot DF$
$\therefore OD//BF$
$\therefore \angle ODB=\angle FBD$
$\because OB=OD$
$\therefore \angle ODB=\angle OBD$
$\therefore \angle OBD=\angle FBD$
$\because AC//BF$
$\therefore \angle C=\angle FBD$
$\therefore \angle C=\angle OBD$
$∴\angle ABC=\angle C$
$(2)连接BE,OE$
$\because \widehat{DG}={60}^{\circ }$
$\therefore \angle GOD={60}^{\circ }$
$\therefore \angle FBD=\frac {1} {2}\angle GOD={30}^{\circ }$
$\because AC//BF$
$\therefore \angle C=\angle FBD={30}^{\circ } $
$由 ( {1} )结论\angle ABC=\angle C得$
$\angle ABC={30}^{\circ }$
$\because \angle BAE=\angle C+\angle ABC$
$\therefore \angle BAE={60}^{\circ }$
$\because OA=OE$
$\therefore \triangle OAE是等边三角形$
$\therefore \angle EOA={60}^{\circ }$
$\therefore \angle ABE=\frac {1} {2}\angle EOA={30}^{\circ }$
$\therefore \angle ABE=\angle ABC$
$\therefore \widehat{AD}=\widehat{AE}$
$\therefore 点D与点E关于直线AB对称$