解: ∵$y=\sqrt {x-9}+\sqrt {9-x}-1$,
∴$\begin {cases}{x-9 \geq 0}\\{9-x \geq 0}\end {cases}$
∴$\begin {cases}{x \geq 9}\\{x \leq 9}\end {cases}$
∴$x=9$,
∴$y=\sqrt {x-9}+\sqrt {9-x}-1=\sqrt {9-9}+\sqrt {9-9}-1=0+0-1=-1$
∴$\sqrt {x}-y=\sqrt {9}-(-1)=3+1=4$,
∵$(\pm 2)^2=4$,
∴$\sqrt {x}-y $的平方根是$ \pm 2 .$