电子课本网 第156页

第156页

信息发布者:

证明:​$ $​在​$△ ADC $​和​$△A_1\ \mathrm {D}_1\ \mathrm {C}_1 $​中
​$ \begin {cases}{A D=A_1\ \mathrm {D}_1}\\{D C=D_1\ \mathrm {C}_1 }\\{A C=A_1\ \mathrm {C}_1}\end {cases}$​
∴​$△A D C ≌△A_1\ \mathrm {D}_1\ \mathrm {C}_1(S S S) $​
又在​$△ABC $​和​$ △A_1\ \mathrm {B}_1\ \mathrm {C}_1 $​中
​$\begin {cases}{A B=A_1\ \mathrm {B}_1}\\{B C=B_1\ \mathrm {C}_1 }\\{A C=A_1\ \mathrm {C}_1}\end {cases}$​
∴​$△A B C≌△A_1\ \mathrm {B}_1\ \mathrm {C}_1(S S S) $​
∴​$∠B =∠B_1$​,​$ ∠B A D=∠B_1\ \mathrm {A}_1\ \mathrm {D}_1 ∠D=∠D_1 $​,
​$∠BCD=∠B_1\ \mathrm {C}_1\ \mathrm {D}_1 $​
∴四边形​$ ABCD $​与四边形​$ A_1\ \mathrm {B}_1\ \mathrm {C}_1\ \mathrm {D}_1 $​全等
解​$ ∶ ∠A=∠A_1$​
理由:连接​$ B D $​、​$ B_1\ \mathrm {D}_1$​
在​$ △ABD $​和​$△A_1\ \mathrm {B}_1\ \mathrm {D}_1 $​中
​$\begin {cases}{A D=A_1\ \mathrm {D}_1}\\{∠A=∠A_1 }\\{A B=A_1\ \mathrm {B}_1}\end {cases}$​
∴​$△A B D ≌△ A_1\ \mathrm {B}_1\ \mathrm {D}_1(S A S)$​
∴​$B D=B_1\ \mathrm {D}_1$​
由​$ (1 ) $​可知四边形​$ ABCD$​与四边形​$ A_1\ \mathrm {B}_1\ \mathrm {C}_1\ \mathrm {D}_1 $​全等​$.$​
解:条件​$ A C=A_1\ \mathrm {C}_1$​,​$ A D=A_1\ \mathrm {D}_1$​