证明:$ $在$△ ADC $和$△A_1\ \mathrm {D}_1\ \mathrm {C}_1 $中
$ \begin {cases}{A D=A_1\ \mathrm {D}_1}\\{D C=D_1\ \mathrm {C}_1 }\\{A C=A_1\ \mathrm {C}_1}\end {cases}$
∴$△A D C ≌△A_1\ \mathrm {D}_1\ \mathrm {C}_1(S S S) $
又在$△ABC $和$ △A_1\ \mathrm {B}_1\ \mathrm {C}_1 $中
$\begin {cases}{A B=A_1\ \mathrm {B}_1}\\{B C=B_1\ \mathrm {C}_1 }\\{A C=A_1\ \mathrm {C}_1}\end {cases}$
∴$△A B C≌△A_1\ \mathrm {B}_1\ \mathrm {C}_1(S S S) $
∴$∠B =∠B_1$,$ ∠B A D=∠B_1\ \mathrm {A}_1\ \mathrm {D}_1 ∠D=∠D_1 $,
$∠BCD=∠B_1\ \mathrm {C}_1\ \mathrm {D}_1 $
∴四边形$ ABCD $与四边形$ A_1\ \mathrm {B}_1\ \mathrm {C}_1\ \mathrm {D}_1 $全等