$证明:(1)∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°$
$在Rt△BED和Rt△CFD中$
${{\begin{cases} {{BD=CD}} \\ {BE=CF} \end{cases}}}$
$∴Rt△BED≌Rt△CFD(HL),∴ED=FD$
$在Rt△AED和Rt△AFD中$
${{\begin{cases} {{AD=AD}} \\ {ED=FD} \end{cases}}}$
$∴Rt△AED≌Rt△AFD (HL),∴∠EAD=∠FAD$
$∴AD平分∠BAC$
$(2)结合(1)中证明可知,AE=AF,BE=CF$
$∴AB+AC=AE-BE+AF+FC=2AE$