电子课本网 第118页

第118页

信息发布者:
45
45
125
$解:不变,理由:$
$∵AD=AC,∴∠ADC=∠ACD=\frac {180°-∠A}{2}=90°-\frac {1}{2}∠A$
$同理,∠BCE=∠BEC=90°-\frac {1}{2}∠B$
$∴∠DCE=∠ACD+∠BCE-∠ACB=90°-\frac {1}{2}(∠A+∠B)=45°$



$解:(2)同意,设AD交EF于G$
$由折叠知,AD平分∠BAC,∴∠BAD=∠CAD$
$由折叠知,AD⊥EF,∴∠AGE=∠AGF=90°$
$∴∠AEF=∠AFE$
$∴AE=AF,即△AEF是等腰三角形$
$(3)由题得,∠NMF=∠AMN=∠MNF,∴MF=NF$
$由对成性可知,MF=PF,∴NF=PF$
$在△MNF和MPF中$
${{\begin{cases} {{NF=PF}} \\ {MN=MP} \\ {MF=MF} \end{cases}}}$
$∴△MNF≌△MPF(SSS)$
$∴∠PMF=∠NMF$
$又∵∠PMF+∠NMF+∠MNF=180°$
$∴3∠MNF=180°,∠MNF=60°$