$解:因为\frac{x}{1×2}+\frac{x}{2×3}+…+\frac{x}{2023×2024}=2023$
$所以(\frac{1}{1×2}+\frac{1}{2×3}+...+\frac{1}{2023×2024})x=2023$
$所以(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2022}-\frac{1}{2023}+\frac{1}{2023}-\frac{1}{2024})x=2023$
$所以(1-\frac{1}{2024})x=2023$
$所以\frac{2023}{2024}x=2023,所以x=2024$