$解:过点C作CF⊥AB于点F.$
$设小正方形的边长为a(a>0),则BC=2a,点A到BC的距离h=2a$
$由勾股定理,得AB=\sqrt {{(4a)}^{2}+{(2a)}^{2}}=2\sqrt {5}a$
$AC=\sqrt {{(2a)}^{2}+{(2a)}^{2}}=2\sqrt {2}a$
$由三角形的面积公式,得\frac 1 2AB·CF=\frac 1 2BC·h$
$即\frac 12×2\sqrt {5}a×CF=\frac 1 2×2a×2a,解得CF=\frac {2\sqrt {5}}5a$
$在Rt△AFC中,由勾股定理,得AF=\sqrt {{AC}^{2}-{CF}^{2}}=\frac {6\sqrt {5}}5a$
$∴tan∠BAC=\frac {CF}{AF}=\frac 1 3$
$∴sin∠BAC=\frac {CF}{AC}=\frac {\sqrt {10}}{10},cos∠BAC=\frac {AF}{AC}=\frac {3\sqrt {10}}{10}$