$解:过点D作DE⊥BC,垂足为E.$
$根据题意,得AF⊥BC,DE=AF.$
$∵ 斜面AB的坡度i=3:4,$
$∴ \frac {AF}{BF} = \frac {3}{4}$
$设AF=3xm,则BF=4rm,$
$∴ 在Rt△ABF 中,AB= \sqrt{AF²+BF²} =5xm.$
$∵ 在Rt△DEC中,∠C=18°,CD=20m,$
$∴ DE=CD×sin 18°≈20×0.31=6.2(\mathrm {m}).$
$由AF=DE,得3x=6.2,$
$解得x= \frac {31}{15} ,$
$∴ AB=5x≈10.3(\mathrm {m}).$
$答:斜坡AB的长约为10.3m$