$解:甲两次买菜的均价为\frac{3+2}{1+1}=2.5(元/千克)$
$乙两次买菜的均价为\frac{3+3}{1+1.5}=2.4(元/千克)$
$[数学思考]\overline{x}_{甲}=\frac{am+bm}{m+m}=\frac{a+b}{2}(元/千克)$
$\overline{x}_{乙}=\frac{n+n}{\frac {n}{a}+\frac {n}{b}}=\frac{2ab}{a+b}(元/千克)$
$\overline{x}_{甲}≥\overline{x}_{乙},理由:$
$\ \overline{x}_{甲}-\overline{x}_{乙}=\frac{(a+b)^{2}-4ab}{2(a+b)}=\frac{(a-b)^{2}}{2(a+b)}$
$∵a>0,b>0,(a-b)^{2}≥0,∴\frac{(a-b)^{2}}{2(a+b)}≥0$
$∴\overline{x}_{甲}≥\overline{x}_{乙}$
$[知识迁移]t_{1}<t_{2},理由:$
$∵t_{1}=\frac{s}{v}+\frac {s}{v}=\frac{2s}{v}$
$t_{2}=\frac {s}{v+p}+\frac {s}{v-p}=\frac {2sv}{v^{2}-p^{2}}$
$\ ∴t_{1}-t_{2}=\frac {2s(v^{2}-p^{2})-2sv^{2}}{v(v^{2}-p^{2})}=\frac {-2sp^{2}}{v(v^{2}-p^{2})}\ $
$∵s>0,p>0,v>0,v>p$
$∴ t_{1}-t_{2}<0$
$∴t_{1}<t_{2}$