电子课本网 第144页

第144页

信息发布者:

$解:\sqrt{2025}-\sqrt{2023}=(\sqrt{2025}-\sqrt{2023})(\sqrt {2025}+\sqrt {2023})$
$=\frac {2}{\sqrt {2025}+\sqrt {2023}}$
$同理 \sqrt{2024}- \sqrt{2022}=\frac{2}{\sqrt{2024}+\sqrt {2022}}$
$∵ \sqrt{2025}+ \sqrt{2023}> \sqrt{2024}+ \sqrt{2022}$
$∴ \sqrt {2025}- \sqrt{2023}<\sqrt{2024}-\sqrt{2022}$
$解:3\sqrt {2}-4= \frac{2}{3\sqrt {2}+4}$
$2\sqrt {3}-\sqrt {10}=\frac{2}{2\sqrt {3}+\sqrt {10}}$
$而3\sqrt {2}>2\sqrt {3},4> \sqrt{10}$
$∴3\sqrt {2}+4>2\sqrt {3}+\sqrt {10}$
$∴3\sqrt {2}-4<2\sqrt {3}- \sqrt{10}$
$解:通过移项可得比较原式的大小等同于比较$
$\sqrt{a+7}- \sqrt{a+5}与 \sqrt{a+5}- \sqrt{a+3}的大小$
$\sqrt{a+7}-\sqrt{a+5}=\frac{2}{\sqrt{a+7}+\sqrt{a+5}}$
$\ \sqrt{a+5}-\sqrt{a+3}=\frac{2}{\sqrt{a+5}+\sqrt{a+3}}$
$∵ \sqrt{a+7}+ \sqrt{a+5}>\sqrt{a+5}+ \sqrt{a+3}$
$∴ \sqrt{a+7}+\sqrt {a+5}< \sqrt{a+5}-\sqrt {a+3}$
$∴ \sqrt{a+3}+\sqrt{a+7}<2 \sqrt{a+5},即P<Q$

$解:∵2x+1≥0,2x-3≥0,∴x≥\frac{3}{2}$
$∵y= \sqrt{2x+1}-\sqrt {2x-3}+5=\frac{4}{\sqrt{2x+1}+\sqrt{2x-3}}+5$
$当x=\frac{3}{2}时,分母\sqrt {2x+1}+\sqrt {2x-3}有最小值2$
$∴y=\frac{4}{\sqrt {2x+1}+\sqrt{2x-3}}+5有最大值7$
$解:由1-x≥0,1+x≥0,x≥0得0≤x≤1$
$y= \sqrt{1-x}+\sqrt{1+x}-\sqrt{x}=$
$\ \sqrt{1-x}+\frac {1}{\sqrt{1+x}+\sqrt{x}}$
$当x=1时, \sqrt{1+x}+\sqrt{x}有最大值$
$则\frac{1}{\sqrt{1+x}+\sqrt{x}}有最小值\sqrt {2}-1$
$此时\sqrt{1-x}有最小值0$
$∴y的最小值\sqrt {2}-1$