$证明:(1)∵DE⊥BC,∴∠DFB=90°$
$∵∠ACB=90°,∴∠ACB=∠DFB, ∴AC//DE$
$∵MN//AB,即CE//AD$
$∴四边形ADEC是平行四边形,∴CE=AD$
$(2)四边形BECD是菱形,理由:∵D为AB中点,∴AD=BD$
$∵CE=AD,∴BD=CE$
$∵BD//CE,∴四边形BECD是平行四边形$
$∵DE⊥BC,∴四边形BECD是菱形$
$(3)当∠A=45°时,四边形BECD是正方形,理由:$
$当∠A=45°时, ∵∠ACB=90°,∴∠ABC=45°$
$由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°$
$∴∠DBE=90°,∴四边形BECD是正方形$