$证明:(1)∵菱形AEFG 与菱形ABCD 相似,∴ ∠GAE=∠DAB$
$∴∠GAE+∠GAB=∠DAB+∠GAB,即∠EAB=∠GAD$
$∵四边形AEFG和四边形ABCD均是菱形,∴AE=AG,AB=AD$
$∴△ABE≌△ADG,∴ EB=GD$
$(2)连接BD,交AC于点O$
$∵四边形ABCD是菱形,∴AD=AB=2,BO⊥AC,BO=\frac{1}{2}BD$
$∵∠DAB=60°,∴△ABD是等边三角形,∴ BD = 2,∴ BO = 1$
$在 Rt△AOB 中, AO =\sqrt{AB^{2}-BO^{2}}=\sqrt{3},∴EO=AE+AO=AG+AO=2\sqrt{3}$
$在Rt△BOE中,EB= \sqrt{EO^{2}+BO^{2}}=\sqrt{13},∴GD=EB=\sqrt{13}$