$证明:(1)∵AC平分∠DAB,∴∠DAC=∠CAB$
$∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴\frac{AD}{AC}=\frac{AC}{AB},∴ AC^{2}=AB×AD$
$(2)∵∠ACB=90°,E为AB 的中点,∴CE=\frac{1}{2}AB=AE,∴ ∠EAC = ∠ECA$
$∵∠DAC= ∠CAB,∴∠DAC=∠ECA,∴ CE//AD$
$(3)∵ CE//AD,∴△AFD∽△CFE,∴\frac{AD}{CE}=\frac{AF}{CF}$
$∵CE=\frac{1}{2}AB,AB=6,∴CE=3$
$∵ AD=4,∴ \frac{AF}{CF}=\frac{4}{3},∴\frac{CF}{AF}=\frac{3}{4}$
$∴\frac{AC}{AF}=\frac{AF+CF}{AF}=1+\frac{CF}{AF}=\frac{7}{4}$