电子课本网 第39页

第39页

信息发布者:
3
$2 \sqrt{10}$
$证明:∵BE=3,EC=6,CF=2,∴ BC=3+6=9$
$∵ 四边形ABCD是正方形,∴AB=BC=9,∠B=∠C=90°$
$∵ \frac{AB}{EC}=\frac{9}{6}=\frac{3}{2},\frac{BE}{CF}=\frac{3}{2}$
$∴\frac{AB}{EC}=\frac{BE}{CF},∴△ABE∽△ECF$
$证明:(1)连接OC,∵l是⊙O的切线,∴OC⊥l$
$∵AD⊥l,∴∠ADC=90°,OC//AD,∴∠CAD=∠ACO$
$∵OA=OC,∴∠BAC=∠ACO,∴∠BAC=∠CAD$
$∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,∴△ABC∽△ACD$
$(2)∵AC=5,CD = 4,∠ADC = 90°, ∴ AD =\sqrt{AC^{2}-CD^{2}}= 3$
$∵△ABC∽△ACD,∴ \frac{AB}{AC}=\frac{AC}{AD}$
$∴ \frac{AB}{5}=\frac{5}{3},∴ AB=\frac{25}{3},∴⊙O的半径为\frac{25}{6}$

$证明:(1)∵ AD//BC,MN//AD,∴ MN//BC,∴△AME∽△ABC$
$(2):. AD//BC, ∴ \frac{DE}{DB}=\frac{AE}{AC}$
$∵ MN//BC,∴△AME∽△ABC,△DEN∽△DBC,∴\frac{AE}{AC}=\frac{ME}{BC},\frac{DE}{DB}=\frac{NE}{CB}$
$∴\frac{ME}{BC}=\frac{NE}{CB},∴ ME=NE$
$∴E是MN的中点,ME=NE=\frac{1}{2}MN$
$∵NN//AD,∴△CEN∽△CAD,∴\frac{EN}{AD}=\frac{CE}{CA}$
$又∵\frac{ME}{BC}=\frac{AE}{AC},∴\frac{NE}{AD}+\frac{ME}{BC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{AC}{AC}=1$
$即\frac{NE}{AD}+\frac{ME}{BC}=1$
$∵ ME=NE,∴\frac{1}{ME}=\frac{1}{AD}+\frac{1}{BC}$
$(3)∵ \frac{1}{ME}=\frac{1}{AD}+\frac{1}{BC},AD=5,BC=7,∴\frac{1}{ME}=\frac{1}{5}+\frac{1}{7},∴ ME=\frac{35}{12}$
$∵ME=NE,∴MN=ME+NE=\frac{35}{12}+\frac{35}{12}=\frac{35}{6}$