$证明:(1)∵ AD//BC,MN//AD,∴ MN//BC,∴△AME∽△ABC$
$(2):. AD//BC, ∴ \frac{DE}{DB}=\frac{AE}{AC}$
$∵ MN//BC,∴△AME∽△ABC,△DEN∽△DBC,∴\frac{AE}{AC}=\frac{ME}{BC},\frac{DE}{DB}=\frac{NE}{CB}$
$∴\frac{ME}{BC}=\frac{NE}{CB},∴ ME=NE$
$∴E是MN的中点,ME=NE=\frac{1}{2}MN$
$∵NN//AD,∴△CEN∽△CAD,∴\frac{EN}{AD}=\frac{CE}{CA}$
$又∵\frac{ME}{BC}=\frac{AE}{AC},∴\frac{NE}{AD}+\frac{ME}{BC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{AC}{AC}=1$
$即\frac{NE}{AD}+\frac{ME}{BC}=1$
$∵ ME=NE,∴\frac{1}{ME}=\frac{1}{AD}+\frac{1}{BC}$
$(3)∵ \frac{1}{ME}=\frac{1}{AD}+\frac{1}{BC},AD=5,BC=7,∴\frac{1}{ME}=\frac{1}{5}+\frac{1}{7},∴ ME=\frac{35}{12}$
$∵ME=NE,∴MN=ME+NE=\frac{35}{12}+\frac{35}{12}=\frac{35}{6}$