$解:(1)设PQ=xmm,则易得PN=2xmm,AE=(80−x)mm$
$∵ 四边形PQMN为矩形,∴ PN//QM,即PN//BC,∴△APN∽△ABC$
$∵易得AE是△APN的高,∴\frac {PN}{BC}=\frac {AE}{AD},解得x=\frac {240}{7}$
$∴2x=\frac {480}{7},∴这个矩形零件的长和宽分别为\frac {480}{7}mm,\frac {240}{7}mm$
$(2)设PN=xmm,PQ=ymm,矩形PQMN的面积为Smm^{2}$
$由题意,易得△APN∽△ABC,AE是△APN的高,∴\frac {PN}{BC}=\frac {AE}{AD},∴y=80−32x$
$∴S=x(80−32x)=−32x^{2}+80x=−32(x−60)^{2}+2400$
$∵0<x<120,−32<0,∴当x=60时,S取得最大值,为2400$
$此时PN=60mm,PQ=80−32×60=40mm,即该矩形零件的长和宽分别为60mm,40mm$