$证明:(1)∵将△ADE绕点A按顺时针方向旋转90°得到△ABF$
$∴∠DAE=∠BAF,AE=AF,∠EAF=90°$
$∴△AEF是等腰直角三角形,∴∠AFE=45°$
$∵AE平分 ∠CAD,∴∠DAE=∠CAE,∴∠FAG=∠CAE$
$∵ 四边形ABCD是正方形,∴ ∠ACD=45°$
$∴ ∠AFG=∠ACE,∴△AFG∽△ACE$
$(2)如图,过点F作BC的平行线,分别交AB,CD于点G,H$
$∵四边形ABCD是正方形,∴∠ABC=∠C=∠D=90°,AD=CD=BC=AB=4$
$∵E为CD的中点,∴DE=CE=2$
$由折叠,知AF=AD=4,EF=DE=2,∠AFE=∠D=90°,∴∠AFG+∠HFE=90°$
$∵GH//BC,∴易得∠AGF=∠FHE=90°,GH=BC=4,AG=DH$
$∴∠GAF+∠AFG=90°,∴∠GAF=∠HFE,∴△AGF∽△FHE$
$∴\frac{GF}{HE}=\frac{AG}{FH}=\frac{AF}{FE}=\frac{4}{2}=2$
$设FH=x,则AG=2x,GF=4-x,HE=\frac{4-x}{2}$
$∵AG=DH,∴2x=2+\frac{4-x}{2},解得x=\frac{8}{5}$
$∴AG=\frac{16}{5},GF=\frac{12}{5},∴ BG=AB-AG=\frac{4}{5}$
$∴在Rt∠BGF中,BF=\sqrt{BC^{2}+GF^{2}}= \frac{4\sqrt{10}}{5}$