$解:过点B 作BF⊥AC于点F,则∠AFB=∠BFC=90°$
$在Rt△BFC中,∵ tan C=\frac{BF}{CF}=\frac{12}{5}$
$∴设BF=12k(k>0),则CF=5k$
$∵BC=21,∴ 由勾股定理得(12k)^{2}+(5k)^{2}=21^{2},解得k=\frac{21}{13}(负值舍去)$
$即BF=\frac{252}{13},CF=\frac{105}{13}$
$∵AC=13,∴AF=AC-CF=13-\frac{105}{13}=\frac{64}{13}$
$在Rt△AFB 中,由勾股定理得AB= \sqrt{\frac{252}{13})^{2}+(\frac{64}{13})^{2}}=20$
$∴sinA=\frac{BF}{AB}=\frac{13}{20}=\frac{63}{65}$