$证明:(1)∵AB=AC,∴∠B=∠C$
$∵∠BDE=180°-∠B-∠DEB,∠CEF=180°-∠DEF-∠DEB$
$又∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF,∴\frac{BE}{CF}=\frac{DE}{EF}$
$(2)由(1),得\frac{BE}{CF}=\frac{DE}{EF}$
$∵ E是BC的中点,∴ BE=CE,∴ \frac{CE}{CF}=\frac{DE}{EF},即\frac{DE}{EC}=\frac{EF}{CF}$
$∵ AB=AC,∴ ∠C=∠B=∠DEF,∴△DEF∽△ECF$
$∴∠DFE=∠EFC,∴FE平分∠DFC$