$解:(1)∵ ∠ACB=90°,CD⊥AB,∴ ∠A+∠ABC= ∠DCB+∠ABC=90°,∴∠A=∠DCB$ $∵CD⊥AB,E是AC 的中点,∴ ED=EA,∴∠A=∠EDA$ $∵∠BDF=∠EDA, ∴∠BDF=∠DCB.$ $∵ ∠F=∠F,∴ △BDF∽△DCF,∴\frac{FD}{FC}=\frac{FB}{FD}=\frac{1}{3}$ $(2)∵∠ACB=90°,AC=2\sqrt{15},BC=\sqrt{15},∴ S_{△ABC}=\frac{1}{2}×2\sqrt{15}×\sqrt{15}=15$ $∵∠ACB=90°,CD⊥AB,∴ ∠BDC=∠CDA=∠ACB$ $∵∠DCB=∠A,∴△BDC∽△CDA,∴\frac{BD}{CD}=\frac{BC}{CA}=\frac{1}{2},∴ \frac{S_{△ABC}}{S_{△CDA}}=\frac{1}{4}$ $∵ S_{△ABC}=15,∴ 易得S_{△BDC}=3$ $∵ △BDF∽△DCF,∴\frac{S_{△BDF} }{S_{△DCF}}=(\frac{BD}{DC})^{2}=\frac{1}{4},∴易得S_{△DCF}=4$
$证明:(1)如图,连接OC$ $∵ OC=OB,∴ ∠B=∠BCO,∴∠AOC=∠B+∠BCO=2∠B$ $∵AB⊥CD,∴∠CEO=90°,∴∠COE+∠OCE=90°$ $∵∠FCD=2∠B,∴∠FCD=∠COE,∴∠FCD+∠OCE=90°,∴∠OCF=90°$ $∵ OC是⊙O的半径,∴CF是⊙O的切线$ $(2)∵AB是直径,CD是弦,且AB⊥CD,∴CE=\frac{1}{2}CD=6$ $∵AB=20,∴OC=10,∴OE=\sqrt{OC^{2}-CE^{2}}=8$ $∵∠OEC=∠OCF=90°,∠COE=∠FOC,∴ △OCE∽△OFC$ $∴ \frac{OC}{OF}=\frac{OE}{OC},∴\frac{10}{OF}=\frac{8}{10},∴OF=\frac{25}{2}$ $∴EF=OF-OE=\frac{25}{2}-8=\frac{9}{2}$
$证明:(1)∵∠ACB=90°,∴∠CAD+∠ADC=90°$ $∵ CE⊥AD,∴∠BCE+∠ADC=90°,∴∠CAD=∠BCE$ $(2)如图,过点E作EF⊥BC于点F,∴ ∠CFE=∠BFE=90°$ $∵∠ACB=90°,AC=BC,∴∠BAC=∠B=45°$ $∴∠BEF=45°,∴EF=BF$ $设BF=x,则EF=x,CF=BC-BF=4-x$ $∵∠ACD=90°,∴∠ACD=∠CFE=90°$ $由(1),知∠CAD=4 ∠FCE,∴ △ACD∽△CFE$ $∴\frac{AC}{CF}=\frac{CD}{FE},∴x=1$ $∴BF=EF=1,∴BE=\sqrt{2}$ $(3)(更多请点击查看作业精灵详解)$
$解:过点E作EG⊥BC于点G$ $∴∠CGE=∠BGE=90°$ $同理(2),可得EG=BG,△ACD∽△CGE$ $设BG=y,则EG=y,CG=BC-BG=4-y$ $∵△ACD∽△CGE$ $∴ \frac{AD}{CE}=\frac{AC}{CG}=\frac{CD}{GE}$ $∴\frac{4}{4-y}=\frac{a}{y}$ $∴y=\frac{4a}{a+4}$ $∴\frac{AD}{CE}=\frac{a}{\frac {4a}{a+4}}=\frac{a+4}{4}\ $
|
|