$解:(1)∵ ∠ACB=90°,CD⊥AB,∴ ∠A+∠ABC= ∠DCB+∠ABC=90°,∴∠A=∠DCB$
$∵CD⊥AB,E是AC 的中点,∴ ED=EA,∴∠A=∠EDA$
$∵∠BDF=∠EDA, ∴∠BDF=∠DCB.$
$∵ ∠F=∠F,∴ △BDF∽△DCF,∴\frac{FD}{FC}=\frac{FB}{FD}=\frac{1}{3}$
$(2)∵∠ACB=90°,AC=2\sqrt{15},BC=\sqrt{15},∴ S_{△ABC}=\frac{1}{2}×2\sqrt{15}×\sqrt{15}=15$
$∵∠ACB=90°,CD⊥AB,∴ ∠BDC=∠CDA=∠ACB$
$∵∠DCB=∠A,∴△BDC∽△CDA,∴\frac{BD}{CD}=\frac{BC}{CA}=\frac{1}{2},∴ \frac{S_{△ABC}}{S_{△CDA}}=\frac{1}{4}$
$∵ S_{△ABC}=15,∴ 易得S_{△BDC}=3$
$∵ △BDF∽△DCF,∴\frac{S_{△BDF} }{S_{△DCF}}=(\frac{BD}{DC})^{2}=\frac{1}{4},∴易得S_{△DCF}=4$