电子课本网 第20页

第20页

信息发布者:
$证明:(1)∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°$
$∴ ∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE$
$∴△BAD≌△CAE,∴BD=CE$
$(2)\frac {\sqrt {2}}{2}$
$(3)①∵\frac{AB}{BC}=\frac{AD}{DE},∴\frac{AB}{AD}=\frac{BC}{DE}$
$又∵ ∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,\frac{AB}{AD}=\frac{AC}{AE}$
$∴∠BAD=∠CAE,\frac{AB}{AC}=\frac{AD}{AE},∴ △BAD∽△CAE,∴\frac{BD}{CE}=\frac{AD}{AE}$
$∵\frac{AD}{DE}=\frac{3}{4},∴ 设AD=3k,则DE=4k$
$在Rt△ADE中,AE=\sqrt{AD^{2}+DE^{2}}=5k,∴\frac{BD}{CE}=\frac{AD}{AE}=\frac{3}{5}$
$②由①,得△ABC∽△ADE,△CAE∽△BAD,∴\frac{BC}{DE}=\frac{AC}{AE},∠ACE=∠ABD$
$∴\frac{BC}{AC}=\frac{DE}{AE}=\frac{4k}{5k}=\frac{4}{5}$
$∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC=sin∠BAC=\frac{BC}{AC}=\frac{4}{5}$
$证明:(1)连接OE$
$∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∴ ∠COE=2∠ABC=90°$
$∵ EF//CD,∴∠COE+∠OEF=180°,∴∠OEF=90°$
$∵OE是⊙O的半径,∴EF是⊙O的切线$
$(2)过点M作MH⊥BC于点H,则易得△BMH是等腰直角三角形$
$∵BM=4\sqrt{2},∴BH=MH=sin45°BM=4$
$在Rt△CHM中,∵ tan∠HCM=\frac{MH}{CH}=tan∠BCD=\frac{1}{2},∴CH=2MH=8$
$∴ CM=\sqrt{CH^{2}+MH^{2}}=4\sqrt{5},CB=CH+BH=12,连接BD$
$∵CD是⊙O的直径,∴ BD⊥BC,∴MH//BD,∴\frac{CM}{DM}=\frac{CH}{BH}$
$∴\frac{4\sqrt{5}}{DM}=\frac{8}{4},∴DM=2\sqrt{5},∴OD=\frac{1}{2}CD=\frac{1}{2}(CM+DM)=3\sqrt{5}$
$∴OM=OD-DM=\sqrt {5}$