$证明:(1)∵ 四边形ABCD是平行四边形,∴AB//CD,AD//BC,AD=BC$
$∴ ∠D+∠C = 180°,∠ABF=∠BEC$
$∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠AFB=∠C$
$∴△ABF∽△BEC$
$(2)∵AE⊥CD,AB//CD,∴∠AED=∠BAE=90°$
$在Rt△ADE中,AE=ADsin D=5×\frac{4}{5}=4$
$在Rt△ABE 中,根据勾股定理得 BE=\sqrt{AE^{2}+AB^{2}}=4\sqrt{5}$
$∵ BC=AD=5,△ABF∽△BEC,∴ \frac{AF}{BC}=\frac{AB}{BE},即\frac{AF}{5}=\frac{8}{4\sqrt{5}}$
$∴AF=2\sqrt{5}$