$解:(1) 在 y=-x+5 中, 令 x=0, 得 y=5,所以 C(0,5);$
$令 y=0, 得 -x+5=0, 解得 x=5 所以 B(5,0).$
$因为抛物线 y=ax^2+4x+c 经过 B, C两点,$
$所以 \{\begin{array}{l}25\ \mathrm {a}+20+c=0\\ \mathrm {c}=5,\end{array}.$
$解得 \begin{cases}a=-1\\c=5\end{cases}$
$所以该抛物线的函数表达式为 y=-x^2+4 x+5.$
(更多请点击查看作业精灵详解)