$解:(1)当x=0时,$
$y=-\frac {1}{6}\times (0-5)^2+6=\frac {11}{6},$
$\therefore 点A的坐标为(0,\frac {11}{6}),$
$\therefore 雕塑高\frac {11}{6}m.$
$(2)当y=0时,-\frac {1}{6}(x-5)^2+6=0,$
$解得:x_1=-1(舍去),x_2=11,$
$\therefore 点D的坐标为(11,0),$
$\therefore OD=11m.$
$\because 从A点向四周喷水,喷出的水柱$
$为抛物线,且形状相同,$
$\therefore OC=OD=11m,$
$\therefore CD=OC+OD=22m.$
$(3)当x=10时,y=-\frac {1}{6}\times (10-5)^2+6=\frac {11}{6},$
$\therefore 点(10,\frac {11}{6})在抛物线y=-\frac {1}{6}(x-5)^2+6上.$
$又\because \frac {11}{6}\approx 1.83 \gt 1.8,$
$\therefore 顶部F不会碰到水柱.$