$解:根据题意,得∠DEC=∠BEA,∠DCE=∠BAE=90°,∴△EDC∽△EBA,∴ \frac{DC}{BA}=\frac{EC}{EA}$
$根据题意,得∠HFG= ∠BFA,∠HGF = ∠BAF = 90°, ∴ △FHG∽△FBA$
$∴\frac{HG}{BA}=\frac{FG}{FA}$
$∵ DC=HG,∴ \frac{FG}{FA}=\frac{EC}{EA}$
$设AC的长为x m,∴\frac{3}{x+51.2+3}=\frac{1}{x+1},解得x=25.6$
$经检验,x=25.6是原分式方程的解且符合题意$
$∴ AC=25.6m,EA=26.6m$
$∵\frac{DC}{BA}=\frac{EC}{EA},∴BA=\frac{DC×EA}{EC}=2×26.6=53.2m$
$∴宝塔AB的高度为53.2m$