$解:(1)根据题意,得∠DAC=∠DCA=45°,∴∠D=90°$
$∵AD=200\sqrt{3}m,∴AC=\frac{AD}{cos45°}=200\sqrt{6}m$
$在Rt△ABC中,∠ACB=90°,∠BAC=90°-60°=30°$
$∴BC=ACtan30°=200\sqrt{6}×\frac{\sqrt{3}}{3}=200\sqrt{2}m$
$∴BC的长为200\sqrt {2}m$
$(2)∵∠DAC=∠DCA=45°,∴AD=CD=200\sqrt{3}m$
$∴路线①的总路程为AD+DC=200\sqrt{3}+200\sqrt{3}=400\sqrt{3}m$
$∴路线①所需的步行时间为400\sqrt{3}÷50≈13.9(min)$
$∵易知AB=2BC=400\sqrt{2}m$
$∴路线②的总路程为AB+BC=400\sqrt{2}+200\sqrt{2}=600\sqrt{2}m$
$∴路线②所需的步行时间为 600 \sqrt{2}÷65≈13.1(min)$
$∵13.1<13.9,∴路线②更省时间$