$证明:(1)在△ABC和△ADC中$
$\begin{cases}AB=AD\\CB=CD\\AC=AC\end{cases}$
$∴△ABC≌△ADC(SSS)$
$∴∠BAC=∠DAC$
$∵AB//CD$
$∴∠BAC=∠ACD$
$∴∠DAC=∠ACD$
$∴AD=CD$
$∵AB=AD,CB=CD$
$∴AB=CB=CD=AD$
$∴四边形ABCD是菱形$
$(2)解:当BE⊥CD时,∠BCD=∠EFD,理由如下:$
$由(1)可得,四边形ABCD是菱形$
$∴CB=CD,∠BCF=∠DCF$
$在△BCF和△DCF中$
$\begin{cases}CB=CD\\∠BCF=∠DCF\\FC=FC\end{cases}$
$∴△BCF≌△DCF(SAS)$
$∴∠CBF=∠CDF$
$∵BE⊥CD$
$∴∠BEC=∠DEF=90°$
$∴易得∠BCD=∠EFD$