$解:(1)f(\mathrm {x})+f(\frac 1{x})=\frac {2x}{x+1}+\frac {2×\frac 1{x}}{\frac 1{x}+1}=\frac {2x}{x+1}+\frac 2{1+x}=\frac {2x+2}{x+1}=\frac {2(x+1)}{x+1}=2$
$(2)由(1),得f(2)+f(\frac 12)=2,f(3)+f(\frac 13)=2,f(4)+f(\frac 14)=2,···,f(101)+f(\frac 1{101})=2$
$∴原式=2×100+f(1)=200+\frac {2×1}{1+1}=201$